
COM00008I

Examinations, 2017–2018

DEPARTMENT OF COMPUTER SCIENCE

Software Engineering Project (SEPR)

Group Open Assessment

Issued: Aut/2/Wed, 4 October 2017

Submission due: 12 noon,

Assessment 1: Aut/7/Wednesday, 8 November 2017 [25%]
Assessment 2: Spr/3/Monday, 22 January 2018 [25%]
Assessment 3: Spr/7/Monday, 19 February 2018 [20%]

Assessment 4: Sum/3/Wednesday, 2 May 2018 [20%] including
Assessed Presentation: Sum/4/TBA

Feedback and marks due:

Assessment 1: Aut/10/Wed, 20 December 2017
Assessment 2: Spr/7/Mon, 19 February 2018

Assessment 3: Spr/10/Mon, 2 April 2018
Assessment 4: Sum/7/Wed, 30 May 2018

These are department-set dates. Feedback is released as soon as it is ready, so
that it can be taken into account in subsequent deliverables. Both SEPR groups
have the same questions and deliverables; only the scenario differs.

All groups should submit their answers through the electronic submission system
(http://www.cs.york.ac.uk/student/assessment/submit/) by 12 noon on the submission
date (above). An assessment (or part of an assessment) that is submitted after this
deadline will be marked as if it had been handed in on time, but the Board of Examiners
will normally apply a lateness penalty to the whole assessment.

The feedback and mark dates are guided by departmental policy, but, in excep-
tional cases, there may be a delay. In these cases, all students expecting feedback
will be emailed by the module owner with a revised feedback date. The date that
students can expect to see their feedback is published on the module descriptor:
http://www.cs.york.ac.uk/modules/

Your attention is drawn to the section about Academic Misconduct in your Departmental
Handbook: https://www.cs.york.ac.uk/student/handbook/

1

http://www.cs.york.ac.uk/student/assessment/submit/
http://www.cs.york.ac.uk/modules/
https://www.cs.york.ac.uk/student/handbook/


COM00008I

All queries on these assessments should be addressed to by email, to dimitris.kolovos@york.ac.uk
and richard.paige@york.ac.uk. Answers that apply to all students will be posted on
the module VLE.

Rubric:

• The four team assessments account for 90% of the total module mark. The final
10% is for the individual closed examination in the summer common assessment
period.

– The closed examination requires you to critique some aspect or aspects of
your (team’s) approach, showing appropriate insight into software engineer-
ing, its methods and best practice.

• All team deliverables must start with the team’s name (this appears on the team
lists). The examination numbers of team members must not appear anywhere in
the assessment deliverables.

• Answer all questions. Note the page limits for each question. Parts of answers
that go beyond the page limit will not be marked. References must be listed at
the end of each deliverable, and do not count towards page limits.

2



COM00008I

1 SEPR Assessment Structure

This is a very long assessment document.

• Read it all, together, as a team: we have not put in anything that is unimportant.

• It is long because the SEPR assessment forms part of your software engineering
training:

– the things requested, the styles of presentation, and the feedback on the
assessments, are designed to help you develop your experience and under-
standing of team-based software engineering;

– nothing is there by mistake (we hope!).

In 2017-18, the SEPR cohort is split into two groups. Each group has a number of
teams. The groups create different products: the product brief will be issued to each
team at the relevant team-forming practical for that group, in Autumn week 2, and will
then appear on the SEPR VLE site.

The assessed presentation for Assessment 4 will take place in the summer term:
the details will be published on the SEPR VLE page and notified by email to all students.

The team assessments build on each other. Together, the assessments constitute
a complete software engineering project. There have been light revisions from the
2016-17 assessment.

1.1 Time

Do not underestimate the individual and team time required for SEPR.

• The module is 30 credits, which is 300 student hours – each.

• We expect that all teams will spend more than 1500 person-hours on the team-
work.

• Work to the set assessments: do not get carried away with, e.g., coding!

• Work out what needs to be researched and undertaken at the start of the project,
and revisit it at the start of every assessment. The best results come in teams
that are very strategic in their approach to the overall project.

• Talk to the lecturers whenever you need help or reassurance!

In this document, Section 2 outlines team set-up and team-mark arrangements;
Section 3 describes the four team assessments, and outlines the deliverables required

3



COM00008I

for each task; and Section 4 gives guidance on the style and marking of each sort of
deliverable, as well as team issues, and various forms of reassessment.

The assessment refers to the “scenario”: this is the product brief that is issued at the
team-forming practical in Autumn week 2, and is subsequently available on the SEPR
VLE site.

2 Project Teams and Team Marks

The project is designed to be undertaken by teams of 5, 6 or 7 students.

• It is up to each team to develop its own structures, team leadership and team
arrangements. There is material provided, but teams should research team
working (there are some notes from previous teams on the VLE site), and consult
the module lecturers as soon as team-related problems arise.

• By analogy to project teams in some software development companies, the lead
lecturers (Dr Dimitris Kolovos, Prof. Richard Paige) form a higher management
level, and should be consulted for things beyond the control of the team, for
instance where team arrangements do not work effectively, or workload becomes
unbalanced and the team cannot reach an equitable adjustment.

• The lead lecturers (Dr Dimitris Kolovos, Prof. Richard Paige) are the final arbiters
in any dispute arising from the composition, performance or size of teams, and in
the distribution of marks to members of a team.

2.1 Team marks and self-assessment

Each assessment is marked out of 100. The first two team assessments are weighted
at 25% of the module mark, since this is where the foundational work and research into
software engineering takes place. The second two team assessments are weighted at
20% of the module mark, since there is much less new learning in these phases – the
concentration is on extension and revision of existing software products.

The mark awarded to each student is the sum of the team mark, the self-assessment
mark, any applicable bonus marks, and any individual penalty (section 2.2). This section
explains the self-assessment mark.

• With each assessment’s deliverables, a team may include a self-assessment
table, laid out as shown in Table 1. The Self-assessment Mark for each
member of the team must be an integer in the range 0 to 10 (i.e. {0, 1, 2, ..., 10}).

4



COM00008I

Table 1: Self-assessment Table
Team Name: Assessment:
NAME SIGNED Self-assessment Mark
. . . . . . . . .
. . . . . . . . .
e.g. D. Duck [a signature] 2

Use the self-assessment if the team wants to recognise unequal contribution to
the team work and/or the assessment deliverables. Note that individuals or teams
are strongly encouraged to contact one of the lecturers, as soon as a problem
becomes apparent.

• If a team allocates a low mark to one or more team members, and has not already
discussed team issues with the lecturers, it is likely that the team will be contacted
by the lecturers. This is important, as both a check of the fairness of marking,
and, more importantly, a prompt to discuss and hopefully mitigate team problems
that could affect subsequent assessments.

If no self-assessment table is included, or if a submitted table is incomplete, then the
self-assessment mark for each member of the team is normally 10.

• If you cannot resolve the team self-assessment within your team, you should
consult the lecturers, immediately after submission.

2.2 Individual Penalties

It is important that all problems with participation in team work and assessment activities
are discussed in a timely manner with the management (as above). Problems can be
raised at any time, not only during an assessment activity.

Whilst the module lecturers can help, they cannot force equal participation. So, a
student who does not participate adequately in team work and assessment activities,
for whatever reason, or who is awarded a low self-assessment mark for an assessment,
or who otherwise misses a substantial part of SEPR, is likely to have marks deducted
from one or more team assessments.

Individual penalties are applied by the lead lecturers (Dr Dimitris Kolovos, Prof.
Richard Paige). It is normal that penalties are only applied after discussion with the
individual concerned. Total non-participation results in a zero mark (a zero assessment
mark, no team bonus marks and no self-assessment mark) for the individual student,
for all affected team assessments.

5



COM00008I

3 The Team Assessments

Each team assessment addresses specific software engineering aspects of the game
described your group’s scenario (product brief).

Teams must bear their own costs (if any), and are responsible for all aspects of
management of their own work.

Where deliverables of later assessments build on deliverables of earlier assessments,
teams should reuse and extend previous deliverables, including (in Assessments 3 and
4) all material provided with a selected software product. For example, the user manual
can reuse or extend either your team’s existing manual or the manual you inherited, as
appropriate.

Where a deliverable asks for an updated version of an earlier deliverable, teams will
be marked on the updates – it is essential that changes are clearly identified.

• Section 4 gives further advice on the content and assessment of each type of
deliverable, and complements the requirements for each assessment, below.

• Note that the SEPR lectures and recorded tutorials give a general introduction
to the software engineering required for the teamwork; teams are expected to
research, and to develop their skills through their research, and through reflection
on feedback given in practicals and on assessments.

3.1 KISS

If you do not know what this means, find out!
This project requires a non-trivial amount of research, design and implementation

effort. A key principle of software engineering is that products should meet their
requirements. There is no merit in producing something that goes beyond what is
required. You are STRONGLY DISCOURAGED from adding unjustifiable additional
features.

3.2 Electronic Submission

Your submission for each team assessment must be one zipfile. The details of what the
zipfile should contain for each assessment are given in tables 2 to 5, below. The zipfile
must be named using the team name, myteam.zip.

• The electronic submission system is configured so that any of you can submit a
SEPR team assessment on behalf of your team.

6



COM00008I

3.3 Assessment 1: Requirements specification and design, due: noon,
Aut/7/Wed

Assessment 1 covers the early stages of requirements specification and design –
including the conceptual architecture of your proposed solution; method selection,
planning; and risk assessment and mitigation. As part of the assessment, each team
will need to (at least) identify appropriate software engineering methods and techniques,
set up a regular meeting schedule, and allocate tasks to team members according to
team member availability and skills.

3.3.1 Deliverables for Assessment 1

Your team will submit a website plus a single .zip file. The requirements for the deliver-
ables to be included in the zipfile are summarised in Table 2.

Table 2: Assessment 1 zipfile contents
Max. Page File name

Deliverable mark limit and format
1. website (submit only the URL) 3 — url1.txt
2. Requirements 22 1 + 3 Req1.pdf
3. Architecture 25 3 + 2 Arch1.pdf
4. Method selection and planning 20 2 + 1 + 1 Plan1.pdf
5. Risk assessment and mitigation 20 1 + 3 Risk1.pdf
6. Optional self-assessment table 10 — SelfAss1.pdf

1. Website [3 marks]

a) The submitted URL must link to the website that is the “public face” of your
team’s project, and will be updated as you proceed.

b) The “management” and other teams can use the website at any time during
the project to access all versions of documentation and executables.

c) You must link each of the assessment documents to your website in a clear
and accessible way.

d) In this assessment, it is the website structure that is marked. You will be
penalised if material is not easily locatable and accessible.

7



COM00008I

2. Requirements [22 marks]:

a) Write a succinct introduction explaining how requirements were elicited
and negotiated, and why they are presented as they are. Your submission
should evidence research into requirements specification and presentation
(5 marks, ≤ 1 page).

b) Give a systematic and appropriately-formatted statement of requirements,
including, for each requirement, a note of any relevant environmental as-
sumptions, associated risks, or alternatives (17 marks, ≤ 3 pages).

Note that you will need a requirements referencing system (e.g. numbering), and
may need to update this for subsequent assessment deliverables.

3. Architecture [25 marks]:

a) Give an abstract (i.e. conceptual – not the fine detail) representation of
the proposed architecture (structure) of the team’s software, with a brief
statement of the specific languages used to describe the architecture (for
instance, relevant parts or versions of the UML family), and, if appropri-
ate, the tool(s) used to create the architecture representation (15 marks,
≤ 3 pages).

b) Give a systematic justification for the architecture, explaining and justify-
ing the components and overall structure, and noting any non-standard
notations used (10 marks, ≤ 2 pages).

4. Method selection and planning [20 marks]:

a) Give an outline and justification of the team’s proposed software engineer-
ing methods, and identify any development or collaboration tools that the
team plans to use to support the project or the team working (10 marks,
≤ 2 pages).

b) Outline the team’s approach to team organisation, and explain why the
chosen approach is appropriate for both the team and the project (5 marks,
≤ 1 page).

c) Give a systematic plan for the rest of the SEPR project. Your plan should lay
out the key tasks for assessments 2 to 4. You should provide a detailed plan
for the the software engineering tasks required for assessment 2. Tasks
should indicate the earliest starting date and the latest finishing date, as
well as task priorities. The plan should also identify a critical path and task
dependencies (5 marks, ≤ 1 page).

8



COM00008I

5. Risk assessment and mitigation: [20 marks]

a) Introduce and justify your risk format and level of detail (5 marks,≤ 1 page).

b) Give a systematic tabular presentation of risks to the SEPR project, their
likelihood, impact, and mitigation (15 marks, ≤ 3 pages).

SEPR is a small project, developing non-critical software. Keep your likelihood
and impact measures simple.

See Section 2 for information on the self-assessment table. [10 marks]
You may use additional pages for a bibliography. Any other overrun will be penalised.

9



COM00008I

3.4 Assessment 2: Preliminary Implementation, due: noon,
Spr/3/Monday

Assessment 2 concerns the detailed software engineering design, and implementation
of part of the software system, based on the requirements and specification created
for Assessment 1. You will revisit the Assessment 1 deliverables, review and maintain
non-code deliverables, and apply version control.

Your group’s scenario (product brief) indicates which elements are to be designed
and implemented for Assessment 2. In Assessment 2, you must not exceed this brief:
do not implement any other features.

Your product must be consistent with the scenario, and with your Assessment 1 work,
as described below.

3.4.1 Deliverables for Assessment 2:

Your team will submit a website plus a single .zip file. The requirements for the deliver-
ables to be included in the zipfile are summarised in Table 3.

Table 3: Assessment 2 zipfile contents

Max. Page File name
Deliverable mark limit and format

1. website (submit URL only) 3 — url2. txt
2. Architecture report 22 2 + 2 Arch2.pdf
3. Implementation 20 code + see text

and report 1 Impl2.pdf
4. GUI report 5 1 GUI2.pdf
5. Testing report 20 1 + 2 (+ Test2.pdf

website)
6. Updates on assessment 20 1 + 1 + 1 + Updates2.pdf

1 deliverables web updates
7. Optional self-assessment table 10 — SelfAss2.pdf

1. The updated Website for your team’s project [3 marks].

The submitted URL should now link to:

a) all the project-related Assessment 2 deliverables, as well as the Assessment
1 versions (please note the specific requirements for updates, below);

10



COM00008I

b) the executable for the game so far;

c) your executable test plan and testing results for the game so far;

d) the user manual for the game so far (including editable source as well as
e.g. a pdf manual).

2. Architecture report [22 marks]:

a) Give a concrete architecture showing the structure of the team’s code, with a
brief statement of the specific languages used to describe the architecture,
and, if appropriate, the tool(s) used to create the concrete architecture
representation. (12 marks, ≤ 2 page)

b) Give a systematic justification for the concrete architecture, explaining how
the concrete architecture builds from the abstract architecture – and any
changes that had to be made to the abstract architecture. Relate the
concrete architecture clearly to the requirements, using your requirements
referencing for identification, and consistent naming of constructs to provide
traceability. Provide precise URLs to any relevant web pages. (10 marks,
≤ 2 pages)

3. Implementation [20 marks]:

a) Provide documented code, and (in a header comment in the code) the
precise URL of the executable on the team website, for a working imple-
mentation of the part of the game that meets the remit, requirements and
concrete architecture for Assessment 2. Code can be submitted in the
zipfile, or via a link to a repository with a verifiable date before the hand-in
deadline. (15 marks)

b) State explicitly any of the features required for Assessment 2 that are not
(fully) implemented, using your requirements referencing for identification,
and consistent naming of constructs to provide traceability. Provide precise
URLs to any relevant web pages. (5 marks, ≤ 1 pages)

4. Provide a GUI report [5 marks, ≤ 1 pages] that briefly summarise and justifies
the initial GUI design, with reference to requirements, usability and playability.
Provide precise URLs to any relevant web pages.

5. A software testing report [20 marks]:

a) Briefly summarise your testing method(s) and approach(es), explaining why
these are appropriate for the project so far. (5 marks, ≤ 1 page)

b) Give a brief report on the actual tests, including statistics of what tests
were run and what results were achieved, with a clear statement of any

11



COM00008I

tests that are failed by the current implementation. If some tests failed,
explain why these do not or cannot be passed and comment on what is
needed to enable all tests to be passed. If no tests failed, comment on the
completeness and correctness of your tests instead. (5 marks, ≤ 2 pages)

c) Provide the precise URLs for the testing material on the website: this
material should comprise your testing design and evidence of testing, and
is marked here (10 marks).

6. Updates on assessment 1 deliverables [20 marks]

In line with software engineering best practice, you are expected to maintain and
update your assessment 1 deliverables, such that the up-to-date versions can
be easily located on the team’s website. For assessment 2, the deliverable itself
only requires summaries and the precise URLs, as follows:

a) Updated requirements [6 marks]:

i. On the Website, include the updated statement of requirements, high-
lighting what has been added and what has been changed (1 mark).

ii. In your deliverable, include a brief explanation and justification of any
requirements changes made for Assessment 2. Include the precise
URL of the statement of updated requirements (≤ 1 page, 5 marks).

Please ensure that the original and any revised requirements referencing is
clear, to support tracing of changes.

b) Methods, plans update [7 marks]:

i. On the website, include the updated plan, showing remaining key
tasks, and detailed tasks for assessment 3. With the plan, include a
brief explanation of any major changes. Also, include any updated
documentation components — e.g. those originally provided under
“Method selection and planning” in Assessment 1. (2 marks).

ii. In the deliverable, include a brief summary of any changes made in
relation to the use of methods and tools, with a short explanation and
justification of each. Give the precise URLs of the updated plan and
any relevant methods and tools web pages (5 marks, ≤ 1 page).

Note that you will be marked on the changes, explanations and justifications:
please ensure that the changes are clearly highlighted.

c) Risk assessment and mitigation update [7 marks]:

i. On the website, include the updated risk assessment and mitigation,
highlighting any changes that have been made. If you decided to

12



COM00008I

change your approach to risk assessment and mitigation after Assess-
ment 1, please state clearly that the web page content is new, and link
to the Assessment 1 risk assessment to allow comparison (2 marks).

ii. In the deliverable, include a brief explanation and justification for any
changes made to the risk assessment for the whole project; if you
changed your approach, explain and justify your change. If no changes
are made, explain why the risk assessment and mitigation, and the
approach, are still appropriate. (5 marks, ≤ 1 page)

Note that you will be marked on the changes, explanations and justifications:
please ensure that the changes are clearly highlighted.

See Section 2 for information on the self-assessment table. [10 marks]
You may use additional pages for a bibliography. Any other overrun will be penalised.

13



COM00008I

3.5 Assessment 3: Selection, Extension and Integration, due: noon,
Spr/7/Monday

Assessment 3 requires each team to work on another team’s product. There are thus
two phases to the assessment, below. As in the previous assessment, Assessment 3
requires review, maintenance and version control activities.

3.5.1 Assessment 3, Phase 1: selection: completed Spr/3/Friday at 10am

After the submission of Assessment 2 (Spr/3/Monday, above), each team has a short
period to consider the products of the other teams. In the Spring Week 3 practical
class that your team attends (Spr/3/Tuesday or Spr/3/Wednesday), each team will
present its product, and can then discuss with other teams. On Spr/3/Friday, each team
is required to register, by 10am, its choice of product to work on in Assessment 3, by
emailing richard.paige@york.ac.uk.

The only constraint on selection is that a team is not allowed to use its own Assess-
ment 2 software in Assessment 3.

In selecting a software product, criteria that may be considered include: (1) the
overall quality of the software product; (2) estimates of effort remaining to complete the
implementation; (3) clarity and quality of the requirements specification, architecture,
testing and implementation.

A bonus of 3 marks will be added to the team’s Assessment 2 mark for each registered
selection of the team’s software product, with the condition that no individual can attain
more than 100% for Assessment 2.

3.5.2 Assessment 3, Phase 2: extension and integration

Your selected product should have designed and implemented the initial elements of the
game, as indicated in your group’s scenario. For Assessment 3, the selected software
product must be extended to cover the full product brief.

For this assessment, you are allowed, but not required, to add other features or
behaviours, as desired, but these must be fully explained and justified in the deliverables,
and must not violate the requirements for the game.

3.5.3 Deliverables for Assessment 3

Your team will submit a website plus a single .zip file. The requirements for the deliver-
ables to be included in the zipfile are summarised in Table 4.

1. The updated Website for your team’s project [5 marks].

The submitted URL should now link to:

14



COM00008I

Table 4: Assessment 3 zipfile contents
Max. Page File name

Deliverable mark limit and format
1. website (submit only the URL) 5 — url3.txt
2. Change report 30 1 + 4 Change3.pdf
3. Implementation 55 code + see text

and report 4 Impl3.pdf
4. Optional self-assessment table 10 — SelfAss3.pdf

a) all the project-related Assessment 3 deliverables, as well as the Assessment
1 and 2 versions (please note the specific requirements for updates, below);

b) the executable for the game;

c) your executable test plan and testing results;

d) the user manual (including editable source as well as e.g., a pdf manual).

2. Change Report [30 marks]:

a) Briefly summarise the team’s formal approach(es) to change management,
including change management of all deliverables, documentation and code.
(5 marks, ≤ 1 page)

b) For each of the following four items, include a brief explanation and justifica-
tion of any changes made (other than simple extensions made to complete
the product). Include the precise URLs of the web pages where updated
material is located. If these is no change to report, please state and justify
why no change was necessary.
(Maximum 7 marks per item, to a maximum total of 25 marks; ≤ 4 pages
in total)

i. The GUI report.

ii. The testing report: methods and approaches, materials or presentation
of tests and testing statistics (you must provide the precise URLs for
Assessment 3 testing materials, as specified in Assessment 2).

iii. Methods and plans: software development methods and tools; team
management approaches; plan for Assessment 4 (you must include
the precise URL of the updated plan).

iv. Risk assessment and mitigation: approach, presentation, risks, mitiga-
tions.

15



COM00008I

3. Implementation [55 marks]:

a) Provide documented code and (in a header comment in the code) the
precise URL of the executable on the team website, for a working imple-
mentation of the game that meets the remit, requirements and concrete
architecture for Assessment 3. You code comments should highlight new
or extended sections of code, and should be consistent with your change
report. Code can be submitted in the zipfile, or via a link to a repository with
a verifiable date before the hand-in deadline. (25 marks)

b) Explain how your code implements your architecture and requirements
(incorporating your recorded changes for Assessment 3). Briefly explain
any significant new features, e.g. non-primitive data types, significant
algorithms or data structures. Give a systematic report of any significant
changes made to the previous software, clearly justifying each change, and
relating it to the requirements and architectures. Note that, if a change has
significant side effects, it needs a solid software engineering justification.
State explicitly any of the features required for Assessment 3 that are not
(fully) implemented. (30 marks, ≤ 4 pages)

See Section 2 for information on the self-assessment table. [10 marks]
You may use additional pages for a bibliography. Any other overrun will be penalised.

16



COM00008I

3.6 Assessment 4: Selection, Requirements Change, due: noon,
Sum/3/Wed

Assessment 4 requires you to work on a product other than that which the team worked
on in Assessment 3. After product selection, changes will be issued. There are thus
two preliminary phases before the main phase of Assessment 4. For Assessment 4,
there is also an assessed presentation which will take place in Summer week 4.

3.6.1 Assessment 4: Phase 1: selection: completed Spr/7/Friday at 10am

After the submission of Assessment 3 (Spr/7/Monday, above), each team has a short
period to consider the products of the other teams. In the Spring Week 7 practical
class that your team attends (Spr/7/Tuesday or Spr/7/Wednesday), each team will
present its product, and can then discuss with other teams. On Spr/7/Friday, each team
is required to register, by 10am, their choice of product to work on in Assessment 4, by
emailing richard.paige@york.ac.uk.

The only constraint on selection is that a team is not allowed to use its own Assess-
ment 3 software for Assessment 4. A team is allowed to use another team’s Assessment
3 extension of its original Assessment 2 product, but must work from the Assessment 3
version.

In selecting a software product, criteria that may be considered include: (1) the overall
quality of the software product; (2) estimates of effort remaining to make the required
changes to the implementation; (3) clarity and quality of the requirements specification,
architecture, testing and implementation.

A bonus of 3 marks will be added to the team’s Assessment 3 mark for each registered
selection of the team’s software product for Assessment 4, with the condition that no
individual can attain more than 100% for Assessment 3.

3.6.2 Assessment 4: Phase 2: requirements change: Spr/7/Friday

For each group, a small set of changes will be issued on Spr/7/Friday (after all teams
have registered their choice of product); these may include changes to the scenario
and/or introduction of new requirements.

Using your selected software product, the team must modify the software product
and supporting documentation to address these changes. Teams must also produce an
up-to-date website for the game.

3.6.3 Assessment 4: Assessed Presentation [20 marks]

Each team is required to make a presentation of the finished game as if to an external
client. The client, who will be an experienced software engineer or games developer, will

17



COM00008I

question the teams about their games and may ask to see the accompanying marketing
and technical information on the website.

The presentation should assume that the client is interested in buying or marketing
the product, and is thus aware of the requirements specified for the product (including
the changes in Assessment 4). Whilst the client will be interested, in general, in major
design decisions, the quality of the software, and the playability of the game, s/he is
likely to be also interested in the potential market for, and extensibility of, the product.

The presentation will take place in a meeting room with access to the University
computer network: within this constraint, teams can use any appropriate media, and
any combination of team members may take part. The presentation should take at most
5 minutes.

Each team will be marked on the clarity and appropriateness of its presentation and
its interaction with the client. Marking is independent of the client’s award (the prize!)
for what s/he considers the best product.

3.6.4 Other Deliverables for Assessment 4 [80 marks]

Your team will submit a website plus a single .zip file. The requirements for the deliver-
ables to be included in the zipfile are summarised in Table 5.

Table 5: Assessment 4 zipfile contents

Max. Page File name
Deliverable mark limit and format

1. Final Architecture and Traceability Report 15 3 AT4.pdf
2. Evaluation and Testing report 20 3 + 1 ET4.pdf
3. Implementation 15 code + see text

and report 2 Impl4.pdf
4. Project review report 20 1 + 1 Review4.pdf
5. Optional self-assessment table 10 — SelfAss4.pdf

This final assessment presents an opportunity to (a) pull together the final forms of
all the software deliverables, and (b) to reflect on the team management aspects of the
project. You should take account of all the feedback from previous assessments, as well
as reflecting the team’s experiences.

1. Final Architecture and Traceability report [15 marks]:
Briefly present, with appropriate models, explanations and justifications, the final
architecture of your completed system. Note both how and why you changed the

18



COM00008I

design that you inherited and how you accommodated the changes that were
introduced for Assessment 4. You may include precise URLs to any relevant ma-
terial on the website (e.g. previous versions of architecture, previous justifications,
tables of requirements, etc.). (15 marks, ≤ 3 pages)

2. Evaluation and Testing report [20 marks]:

a) Briefly explain and justify the approach that the team took to evaluation and
testing of the final product. For the purposes of this question, evaluation
refers to how you determined that the product met its brief; testing refers
to how you determined that your code was of appropriate quality – you
need to state and justify what you consider to be appropriate quality. Note
any modification that you made to the Assessment 3 testing approach or
materials, and how you accommodated the changes that were introduced
for Assessment 4. You may include precise URLs to any relevant material
on the website (e.g. test plans, testing materials, test statistics, previous
versions of testing, previous justifications, etc.). (15 marks, ≤ 3 pages)

b) Comment on how your product meets, and does not meet, the requirements.
Include precise URLs for the web pages where the final requirements can
be found. (5 marks, ≤ 1 page)

3. Implementation [15 marks]:

a) Provide documented code and (in a header comment in the code) the URL
of the executable on the team website, for a working implementation of
the game that meets the remit, requirements for Assessment 3, and the
concrete architecture and changes introduced in Assessment 4. You code
comments should highlight new or extended sections of code. Code can
be submitted in the zipfile, or via a link to a repository with a verifiable date
before the hand-in deadline. (5 marks)

b) Summarise how the software (code and GUI) was modified to incorpor-
ate the required changes, and any other necessary changes made to the
software, relating each change to the revised final requirements and ar-
chitecture, and clearly justifying each change. Explain how and why you
changed the software and GUI that you inherited. Explain and justify any ex-
tra features that have been included in the software. (10 marks,≤ 2 pages)

4. Project Review Report [20 marks]:

Now that you have completed an end-to-end software project, including exten-
sion and modification, write a short commentary on your team’s management,
approaches, methods and tools, as follows.

19



COM00008I

a) Briefly summarise, with appropriate citations of literature and online sources,
your team’s approach to team management and the team structure at the
end of the project. Give a succinct account of how and why your team
management and team structure evolved (or did not evolve) over the course
of the project. Make reference to the changing needs or risks of the project,
as well as your developing understanding of the members of the team and
of software engineering and team management. (10 marks, ≤ 1 page)

b) Briefly summarise, with appropriate citations of literature and online sources,
the software engineering development methods and tools that your team
chose to use. Give a succinct account of how and why the choice of
development methods and tools evolved (or did not evolve) over the course
of the project. Make reference to the changing needs or risks of the project,
as well as your developing understanding of the members of the team and
of software engineering. (10 marks, ≤ 1 page)

See Section 2 for information on the self-assessment table. [10 marks]
You may use additional pages for a bibliography. Any other overrun will be penalised.

20



COM00008I

4 Marking notes

To pass SEPR, a student must reach the overall module pass mark. There is no
requirement to pass any one of the component assessments.

A student wishing to request exceptional circumstances affecting assessment (ECA)
for one or more of the SEPR team assessments is strongly advised to discuss their
situation with at least one of the lead lecturers, as there are legitimate ways to handle
ECAs that affect team working, some of which avoid formal reassessment. See Section
4.13 for more information.

4.1 General Approach and Style

Teams are expected to research their software engineering needs and develop their ex-
perience and expertise in relation to team management, software engineering methods
and tools, risk management, requirements, design/architecture, change management
and version control, coding and GUI design.

• There is a wide range of material on line, and in standard texts such as Som-
merville’s Software Engineering (any recent edition is good: it’s also on line).

• Credit will be given for evidence of research and for appropriate consideration of
alternatives where explanation or justification is requested.

• The best results are likely to come from regular review and updating of your
approaches to the project, rather than leaving these activities til the point when
you write each report.

• Good software engineering is not a set of independent activities and documents:
you should ensure that your documentation and code are internally and mutually
consistent.

• You will never be penalised for asking for clarification.

We are looking for clear, succinct presentation, not essays. The SEPR lecturers have
to assess, mark and provide feedback on a significant amount of material in a short
time (during which they have many other obligations to fulfil!): the easier it is to read
your reports, the better chance you have of a good mark.

• As a team, try to understand the markers’ position, and work out a clear consistent
presentation style.

• You must clearly format your reports so that they match the questions and sections
of questions: it must be unambiguous what part of the assessment you think you
are addressing in every part of every report.

21



COM00008I

• You will lose marks for ignoring instructions or for doing what you think we might
want rather than what the question asks for.

• Take out superfluous opinions and adjectives: they have no part in an engineering
report.

• Use bullet lists, or text bullets (as used in this document), and signal topics clearly,
e.g. by subheadings or emboldened lead-words.

• Page limits are limits not targets: if you do not need all the pages, you will not be
penalised for writing less, well. However, you are likely to lose credit for wordy,
rambling, imprecise, or poorly-presented work.

• Spell check AND proof read all documents before submission.

When submitting your assessments, please ensure that all the deliverables are in
accordance with the instructions for that element of assessment (Section 3), including
zipfile information on naming.

4.2 Website and website deliverables

The website is used to provide a working software-engineering resource for you, other
teams, and the markers, giving access to documents (e.g. requirements, architecture,
testing materials, etc.) and executables.

• You will be marked on the structure of your website: how easy it is to locate
required content, and how you manage the need to present “marketing” and
software engineering content.

• Markers will not spend time hunting for material on the website, so you need
a good site structure, and the route to specific software-engineering resources
(including all required product materials) must be clear.

Please note that, if you cannot stay within the assessment page limits for “factual”
deliverables such as the requirements or risk assessment, diagrammatic models, test
evidence, etc., it is often appropriate to include the full material (suitably introduced,
linked and formatted) on the website, and present an appropriately-chosen subset (with
explanation and cross-reference links for the full material) in the assessment deliverable.

4.3 Requirements documentation

• You will be marked on the clarity and appropriateness of your approach, and ap-
propriateness and presentation of requirements, not the number of requirements
that you state.

22



COM00008I

• Good software engineering pays attention to traceability: (a) from requirements
through architecture and design, to code; and (b) across the development lifespan.
Marking will reflect how well your requirements presentation supports traceability,
e.g. through its approach to requirement identification.

• Your requirements are assessed on their objectivity: is there a test that can
demonstrate whether the requirement is met? For requirements that are inherently
difficult to make objective, you may get credit for explaining how, subjectively, a
requirement can be shown to be met.

• You will gain credit for concise, appropriate commentary on, for instance, how
particular requirements could be affected by environmental assumptions, how
you address any development or project risks related to specific requirements,
and realistic alternatives for “risky” requirements.

4.4 Architecture documentation

You are asked variously for abstract (conceptual) and concrete architectures.

• You will be marked on how well your architecture and reporting conforms to the
appropriate level of abstraction: you will lose marks for making the architecture
too detailed, or ignoring instructions.

• You will be assessed on the clarity and appropriateness with which you state the
language(s) and tools that you use.

• You will be marked on how clearly your architecture justification follows the
structure of your architecture, and accounts for unusual features or notations.

4.5 Implementation and GUI

• You will be marked on the software engineering quality of your code, not its
cleverness.

• When summarising design decisions, you should identify and focus on the key
features and major decisions, rather than enumerating every data type, etc.

• Use formatting, naming conventions, etc. to make it easy to trace between your
code and all relevant documentation.

The project is primarily about software engineering of the game: there is no teaching
on GUI design, and an appropriately small amount of credit is available for your GUI.

23



COM00008I

• It is up to each team to decide how much effort they put into the visuals of the
game: this may attract other teams (and the presentation client) to your product,
may help to meet requirements, etc., but you do not need to put a lot of work into
the GUI write-up!

4.6 Software testing

Please read the sections on software testing carefully. The bulk of the testing design
and results should be on your website.

• The testing report is only part of the assessment: do only what is requested.

• For the material on the website, we are looking for clarity of test design and
purpose, as well as evidence of actual testing. Please remember that the markers
will not hunt for testing material: it needs to be easy to find on the website (e.g.
because the URL in the report takes the user straight to the testing section of the
website, etc.) and easy to understand.

• Even if there is no requirement to report on testing, your website must evidence
that you have appropriately tested your software!

• You need to ensure that your test planning and execution is consistent with the
whole software engineering product, not just the code.

• A software engineering rule of thumb is that testing needs to be related to the
criticality (however measured) of what is being tested: markers will be looking for
appropriate (and justified) levels and scales of testing.

4.7 Methods and plans, and their updating

• Make sure that you understand what is meant by the words used in the questions:
terminology is used in its software engineering sense, not general English usage.

• Only answer the questions asked: you will not get credit for exploring other
aspects of your team work in your answers.

• When you are asked to update or replace a report, you will gain credit for doing
what is asked – you will lose credit, for instance, if it is unclear what you changed.

• You will be marked on the appropriateness of the contents and granularity of your
plans: there is no point in going into huge detail for things that are a long way
ahead. There are no marks for planning the past (although you need a plan for
assessment 1, you are not asked to submit it, because it is history by the time
you submit assessment 1!).

24



COM00008I

4.8 Risk assessment and mitigation, and its updating

A good risk assessment and mitigation aims to identify things that are risky and to
mitigate effects, not to try to prevent occurrence of risks.

• Follow the guidance for Methods and plans, above.

• Research risk assessment and mitigation: you will get credit for the appropriate-
ness of your approach and presentation to the type of project.

• You will be marked on the clarity and appropriateness of your approach, and
appropriateness and presentation of risks and mitigation, not the number of risks
that you state.

4.9 Change reporting

Change management, and software maintenance, are key activities in practical software
engineering. You need to research these, and to plan for change even at the start of
your project.

• Try not to report the same changes in different deliverables: you can cross-
refer between reports as needed (give URLs if reports are not in the current
deliverables).

• You should focus on discussing and justifying major changes, rather than listing
minor (uncontentious, no side-effects) changes.

• You will gain credit for the consistency with which large changes are tracked and
traceable through your project documentation (including any relevant risk factors,
requirements, testing, etc.).

4.10 Project Review Report

The project review report is the only document that we ask for which is not directly part
of good software engineering practice. However, the process of continuous self-analysis
and improvement is part of mature software engineering (e.g. the CMM standards –
look this up!).

If a book or website raves about a method (or tool, etc.), it does not mean that it will
be ideal for your team and your project; your ability to analyse and understand this is an
important part of software engineering management.

The review report is the hardest part of the team assessment. The best results are
likely to be obtained if you prepare for this report from the start of the team project.

25



COM00008I

• We are looking for teams’ abilities to analyse the successes and failures of their
experience in SEPR – and to relate these to the teaching and to the team’s own
research.

• We are looking for rationale and evidence for change over time, whether due to
changes in understanding, changes in the project, changes within or beyond your
control – credit will be gained for evidencing how the evolution of the team and
its software engineering experience is reflected in changing approaches to team
management, risk, and other relevant aspects of software engineering.

4.11 Team issues, reassessment, and mitigation

As endlessly repeated in the assessment document, and in lectures and practicals, if
a team is not functioning or you feel that the work is not being shared in an equitable
way, then you are strongly encouraged to contact the lead lecturers as soon as
possible (email dimitris.kolovos@york.ac.uk, richard.paige@york.ac.uk). As outlined on
the SEPR VLE (Teams: TeamInfo.html), there are many ways we can try to help, but we
cannot help if we do not know that there is a problem, or if we only find out at or after an
assessment submission date.

4.12 Reassessment

If an individual fails SEPR, there are two reassessment elements: there is a resit of
the individual examination (a new paper), and there is a reassessment essay on the
teamwork. The setters will specify part of the project, and frame the reassessment
essay to address the key software engineering learning objectives. The reassessment
essay will also require some self-reflection, as in the final part of Assessment 4, to
assess the candidate’s understanding of the teamwork learning objective.

The candidate is expected to contextualise the stated part of the project, and to
complete the reassessment on their own (i.e. without interacting with their team or
other SEPR students), using any of their team’s materials that they have access to.
Reassessment candidates will not be able to request or require materials: they must
make their own arrangements to access team products.

Remember that SEPR is a 30-credit module, and that a very large number of hours
are allocated to the teamwork assessments. It is not going to be a short reassessment
or one that is easy to pass.

4.13 Exceptional circumstances affecting assessment (ECA)

Any student can apply for ECA for SEPR in the normal way, providing evidence of the
effect of their exceptional circumstances on SEPR. However, we would strongly advise

26



COM00008I

anyone considering this to discuss their situation with the lead lecturers first – and,
ideally, well before an assessment deliverable may be affected by their circumstances.

The ideal situation is to handle individual problems within the assessment context:
we can, for instance, adjust load or help teams to manage a temporary absence.

If ECA is requested and granted for one SEPR team assessment, we would normally
suggest a write-off: this gives the student having a mark of 0 for at most 20% of SEPR
(so, for assessments 1 or 2, the student carries 0/5; for assessments 3 or 4, the student
carries 0/0). We can use the 20% write-off rule because the learning objectives of
SEPR are met cumulatively across the 4 assessments, rather than each objective
being assessed in only one element. The effect of a write-off can be quite difficult to
understand, so here is a hypothetical example.

Sam has ECAs accepted for assessment 1 (worth 25% of SEPR). Sam’s
ECA claim asked for a write-off of the assessment (0/5). Sam experi-
enced no further exceptional circumstances, and received marks of 76,
65 and 70 for the next three assessments. In the individual exam, Sam
got 93. So, with the component weighting, Sam’s scores are 0 + (0.25 ∗
76/100) + (0.2 ∗ 65/100) + (0.2 ∗ 70/100) + (0.1 ∗ 93/100) but
this result is out of 80 (20% was written off). Normalising to an integer
percentage, Sam gets 70

Jo has ECAs accepted for assessment 3 (worth 20% of SEPR). Jo’s ECA
claim asked for a write-off of the assessment (0/0). Jo experienced no
other exceptional circumstances, and received marks of 76 and 65 for the
first two assessments, and 70 for assessment 4. In the individual exam,
Jo also got 93. So, with the component weighting, Jo’s mark is (0.25 ∗
76/100) + (0.25 ∗ 65/100) + 0 + (0.2 ∗ 70/100) + (0.1 ∗ 93/100),
which normalises to 73

If a student with an ECA granted prefers to opt for a “sit as if for the first time” for the
affected component, then the setters will construct an essay question that meets the
learning objectives covered in that assessment (a mini version of the reassessment
described for a complete SEPR fail, in Section 4.12). Please note that, however well-
intentioned and generous the setter of the essay, this is not an easy option: because
the assessments are used for learning as well as summative marking, each team
assessment represents a quarter (assessment 1 or 2) or a fifth (assessment 3 or 4) of
the SEPR load, which translates to 75 or 50 hours of student time. An ECA essay is
likely to require at least half this original input of time.

To illustrate, let’s assume that Sam and Jo opted to sit as if for the first time on the
element that was ECA’d; Sam scored 64 and Jo scored 65.

27



COM00008I

Sam’s SEPR mark is thus, (0.25∗ 64/100) + (0.25∗ 76/100) + (0.2∗ 65/100) + (0.2∗
70/100) + (0.1 ∗ 93/100)/100), which is 71.

Jo’s SEPR mark is, (0.25∗ 76/100) + (0.25∗ 65/100) + (0.2∗ 65/100) + (0.2∗
70/100) + (0.1 ∗ 93/100), which is 72.

So, for a wrecked summer vac., Sam got one mark more and Jo got one mark less
than was on offer for doing no extra work at all (in the write-off case). Even noting that
SEPR is 30 credits (a quarter of the year), the gamble isn’t worth it!

28


	SEPR Assessment Structure
	Time

	Project Teams and Team Marks
	Team marks and self-assessment
	Individual Penalties

	The Team Assessments
	KISS
	Electronic Submission
	Assessment 1: Requirements specification and design, due: noon, Aut/7/Wed
	Deliverables for Assessment 1

	Assessment 2: Preliminary Implementation, due: noon, Spr/3/Monday
	Deliverables for Assessment 2:

	Assessment 3: Selection, Extension and Integration, due: noon, Spr/7/Monday
	Assessment 3, Phase 1: selection: completed Spr/3/Friday at 10am
	Assessment 3, Phase 2: extension and integration
	Deliverables for Assessment 3

	Assessment 4: Selection, Requirements Change, due: noon, Sum/3/Wed
	Assessment 4: Phase 1: selection: completed Spr/7/Friday at 10am
	Assessment 4: Phase 2: requirements change: Spr/7/Friday
	Assessment 4: Assessed Presentation [20 marks]
	Other Deliverables for Assessment 4 [80 marks]


	Marking notes
	General Approach and Style
	Website and website deliverables
	Requirements documentation
	Architecture documentation
	Implementation and GUI
	Software testing
	Methods and plans, and their updating
	Risk assessment and mitigation, and its updating
	Change reporting
	Project Review Report
	Team issues, reassessment, and mitigation
	Reassessment
	Exceptional circumstances affecting assessment (ECA)


