

Requirements
The first step in the requirements engineering process was to elicit our requirements. We needed
to identify how to gather these requirements using different methods such as stakeholder
negotiation and user scenarios. It was also important for us to record the elicitation phase in detail
so that we can form good rationale for each requirement [1, p.87]. Below are the processes we
went through during the elicitation phase.

Elicitation Phase

Assessing the Brief
We began by using our first team meeting to address ambiguities in the brief. From there we
formed a list of questions that addressed these uncertainties, which were asked in our initial client
meeting. Using the answers provided by the client we formed a list of initial requirements, which we
used to form the basis for the rest of the elicitation process.

User Survey
To be thorough with the quality of the requirements gathered we designed a survey
containing questions based on these requirements. This was then distributed among one of our
stakeholders, our cohort. We received 25 responses out of the 49 people in our cohort which is an
acceptable response rate for an internal survey of this kind, the responses can be found in
reference [2]. The answers to the survey raised some conflicts between what the client wanted and
what the users wanted from the game. These conflicts were noted [2] so that they could be
presented to the client during validation.

Validation
We prepared a list of conflicts gathered from our user survey and first client interview. Finding
suitable compromises to these conflicts through negotiation with the client was critical to ensure
that all stakeholders in the project were satisfied with the final set of requirements. The second
meeting with the client gave us the opportunity to validate all of our requirements and resolve
conflicts so that we could produce a final set of agreed upon, unambiguous, requirements.
Additionally, we presented the client with a prototype of the map design and game mechanics; so
that we could verify that we were in line with what he wanted.

Requirements Specification and Presentation
Our requirements table’s design and standard was based on the IEEE specification [3], however
we modified it to include reference numbers to make it easier to refer to individual requirements
throughout the project. Research was done into the different types of requirements that could arise
in a project like this [3, pp.16-17]. Following this research, we decided to include functional,
non-functional, constraint and performance requirements into our table to cover all the types’ of
requirements we had gathered during our elicitation process.

Requirements were mainly derived using three methods: primarily interviewing the client [4], user
survey [2] and finally from using use case scenarios [5]. The use case scenarios allowed us to
model how the user would interact with the system. This identified features that the system should
include which led to the derivation of requirement F15, something that could have otherwise been
missed out if we had not formed Scenarios.

Table Key

 C = Constraint Requirement F = Functional Requirement

NF = Non-Functional Requirement P = Performance Requirement

Software Requirements Specification Table

ID
Number

Requirement Rationale, Assumptions, Associated risks and
Alternatives

C1 System must be able to
run on a computer in the
Computer Science
department.

The game should at least be able to run on an operating
system that the computers in the department have,
(Windows or Linux). Additionally, we should take into
account devices with lower specs being able to run the
game as well.

C2 The system should
appeal to our SEPR
cohort and prospective
university students.

Based on the University of York Communication Officer’s
statement the game will be used at open days to advertise
to prospective students. Hence, we need to target the
game at an age range of 17 – 20 year olds. A risk here is
that we may alienate other demographics such as older
users, (i.e. parents).

C3 The game shall be able
to take input from both
the mouse and the
keyboard.

Team names will need to be entered using the keyboard
and the mouse should be used to navigate and control the
game. There is a potential risk to make the controls too
complex here which would make the game difficult for new
players.

F1 Game time should be
between 10 and 30
minutes.

Our user questionnaire [2] suggested a game time of
approximately 1 hour, however our client requires that the
game should typically last 10 to 30 minutes [4]. It will also
reduce the risk of a player becoming bored part way
through a game, as it is shorter.

F2 The system should have
a turn timer that can be
toggled on/off in the
game setup/options
menu.

Based on our user questionnaire [2] and validation in the
client meeting [4] the player should have the option at the
start of a game to enable or disable a turn timer.

F3 The turn timer, if enabled,
should pause while the
mini-game is being
played.

If the Vice-Chancellor appears then the turn timer should
be paused for the duration of the game as the current
player would be unfairly disadvantaged if they missed out
on part of their turn time.

F4 Turn time limit should
range between 30 and
120 seconds.

Based on our user survey [2] the median group of users
felt a turn should last between these times.

F5 A mechanism is required
to resolve conflicts, i.e.
Team A is attacking a
sector held by Team B.

Relating to requirement F6 this mechanism will contain an
element of RNG but will have an element of skill involved
as well. The amount of skill required should be based on
the relative strength of armies in combat. Meaning that if
the attacker is significantly more powerful than the
defender then it will not take much skill to defeat the
opponent.

F6 The battle mechanic
requires an element of
skill.

User feedback suggested that the combat mechanic
should contain an element of skill [2]. We must consider

play testing a mechanic like this to make sure it keeps the
game balanced and fun.

F7 When a player conquers
a sector there is the
possibility that the
Vice-Chancellor may
appear, triggering a
mini-game.

The Vice-Chancellor mini-game is triggered upon
conquering a sector he is hidden on. If it was too frequent,
we risk the mini-game becoming tedious and annoying so
a possible spawn rate for the Chancellor should be added.

F8 The Vice-Chancellor
mini-game should last
approximately 30
seconds.

Our client specified in an interview [4] that the mini-game
should last approximately 30 seconds. If the game lasted
much longer it would risk becoming boring and other
players waiting for their turn could become bored.

F9 No bonus should be
awarded to the player if
they fail the Pro-Vice
Chancellor mini-game.

Due to ambiguity in the brief we validated this requirement
with the client [4].

F10 A player limit of 2-4
players and in games of 3
or 4 players there may
also be a neutral player.

This was a decision we came to based on the data
gathered from the user survey and client interview [2, 4]. A
risk here is that map size is fixed. Meaning if 4-players
decide to have a game then it could get crowded if the
map size is too small.

F11 A third neutral AI player
must be present in a
2-player game.

This AI can only defend and will never receive
reinforcements or move. As validated by the client [4], the
purpose of this AI is to also create a layer of
unpredictability in the game.

F12 The system should
include the ability to save
at least one game and be
able to reload it at a later
time.

Mentioned in the brief this is essential due to how long a
game could possibly go on for.

F13 The system should
contain a GUI based on
the university campus
map, subdivided into
sectors.

The map should be recognisable as the University of York
campus; however we have the liberty to modify it to a
degree in order to improve gameplay. There is a risk that if
we try to make the map too much like reality we will not be
able to make it balanced.

F14 A bonus mechanism
should be included for
holding sectors at the end
of the player’s turn.

For each sector that the player captures, at the end of
their turn, they will be given some bonus. This bonus could
be troops or in-game currency. If the bonuses are poorly
balanced then we risk it being impossible for a losing
player to make a comeback as one player could become
unfairly powerful.

F15 Before the start of every
game the user should be
prompted with an
intermediate
setup/options menu.

This ensures the user can alter the system environment in
a controlled way before games start. This eliminates the
frustration of having to alter game settings mid game. We
also found that through user scenarios [5] this is a
mechanism the game needs for the user to transition
smoothly into a game.

F16 A mechanism for
calculating how many
new gang members each
gang receives in

Each sector has a value for the amount of reinforcement
troops it provides at the end of a player’s turn if they own
it. The player can then allocate these troops to any sector
they are currently holding.

each turn; new
gang members should be
allocated to held sectors.

F17 At the start of the game,
all sectors are unclaimed.
Each sector should be
allocated (by
some random
mechanism) to a gang.

The allocation mechanism needs to be tested so the
gameplay is balanced. i.e. Players don’t receive too many
high value sectors. The risk here is that a completely
random mechanism could create disadvantages for some
players and advantages for others.

NF1 The game must be easy
for new players to pick
up.

This must be considered as the game will be used at
University open days and UCAS days. A complicated
game will just frustrate users who may only have a couple
of minutes to try it out before moving on. But, there is a
risk of making it too simple. Turn based strategy games
are known for being complicated and we don’t want to
drive away experienced players of the genre.

NF2 The game should be
stylised using a hybrid
between realistic
graphics and cartoons.

This style was chosen based on user feedback from the
survey [2]. A risk here is that producing all of the graphical
resources could consume a lot of time.

NF3 The game should be
suitable to use in
advertising situations.

The product must be suitable for the University to use in
advertisements, such as at open days and UCAS days.
Regular meetings with the client should ensure that the
product we are developing is suitable for the University to
use in this way.

NF4 The game should have a
soundtrack including
background music and
sound effects.

Relating to requirement C2 and NF3 the game needs to
engage the player and capture the users interest
respectively. By using a soundtrack we can immerse the
user more. There is a risk that the sound production
process may take more time and resources than we can
allocate.

NF5 The game should have
accessibility features for
disabled users

A risk here is that implementing such features may
consume a lot of development time.

P1 The game must run
smoothly. i.e., Should not
crash or lag.

If an issue is found with performance on lower spec
devices we can optimise the game.

References

[1] I.S. Sommerville and P.S. Saywer. Requirements Engineering, A Good Practice Guide.
https://www.scribd.com/document/337626753/Sommerville-Ian-Sawyer-Pete-Requirements
-Engineering-A-Good-Practice-Guide [Accessed: Oct. 31, 2017].

[2] SEPR “Survey Results Analysis” Risky Developments [Online]. Available:
http://riskydevelopments.co.uk/documents/UserSurveyResults.pdf [Accessed: Nov. 3 2017].

[3] "IEEE Xplore Document. IEEE Recommended Practice for Software Requirements
Specifications". [Online]. Available: http://ieeexplore.ieee.org/document/392555/ [Accessed:
Oct. 31, 2017].

[4] SEPR “Client Interview Records” Risky Developments [Online]. Available:
http://www.riskydevelopments.co.uk/documents/ClientInteviewRecords.pdf [Accessed:
Nov. 3 2017].

[5] SEPR “Use Cases” Risky Developments [Online]. Available:
http://riskydevelopments.co.uk/documents/UserScenarios.pdf [Accessed: Nov. 3 2017].

https://www.scribd.com/document/337626753/Sommerville-Ian-Sawyer-Pete-Requirements-Engineering-A-Good-Practice-Guide
https://www.scribd.com/document/337626753/Sommerville-Ian-Sawyer-Pete-Requirements-Engineering-A-Good-Practice-Guide
http://riskydevelopments.co.uk/documents/UserSurveyResults.pdf
http://ieeexplore.ieee.org/document/392555/
http://www.riskydevelopments.co.uk/documents/ClientInteviewrecords.pdf
http://riskydevelopments.co.uk/documents/UserScenarios.pdf

