
Implementation Report
Summary
As part of Assessment 3 we were required to take over an existing project and implement
the remaining requirements of the scenario for this project. Our team was able to implement
all of these requirements, including: a save and load system; the neutral player and a
mini-game triggered by entering the Vice-Chancellor’s sector.
The architecture of the software we received was very difficult to work with. Large amounts
of the code were highly entangled making it very difficult to extend the code and follow how
things worked. This lead to slower development and made it not possible to implement large
amounts of unit testing. This was because functions that were used to modify the game state
also updated properties of the scene meaning that it was not possible to isolate sections of
code to automatically test. Without a fundamental redesign of the game’s architecture
extensive automated unit testing will not be possible to implement.

Format and Process
This document outlines the most significant additions and changes that have been made to
the projects implementation since Risky Developments commenced working on the software.
Each entry contains a description of the change that has been made; a list of the files
significantly affected and an explanation of why the change was made and how the change
was implemented.
Throughout the document the requirements for the project [1, 2] are referred to for justifying
the additions and changes.

Additions

Changes Made: Save and Load System

File Modifications: GameData.cs; SavedGame.cs

Explanation: Implemented save and load functionality. When calling the Save
method an xml file is created that stores a serialized version of the
GameData class, containing all the necessary properties to
instantiate a game. The Load method deserializes a given xml file
and which we can then instantiate a game from.
This addition was made as per requirement F7 the game should
be capable of being loaded and saved.

Changes Made: Minigame System

File Modifications: Bird.cs; MinigameManager.cs; MovingPillars.cs; Minigame.unity

Explanation: Implemented the minigame which is triggered when the sector
which contains the Vice Chancellor, (VC = True), is captured, as
per requirement F3. A copy of the current game is saved to a
temporary save slot and the scene is switched to the Mini Game
Scene. The player flies a bird through some pipes in order to gain

coins until the hit an obstacle or collect 10 coins. The scene is then
switched back to the scene and the temporary save game is
reloaded so that the main game may resume.And as per
requirement F4 the player is rewarded based on the amount of
coins that they collect.

Changes Made: Dialog System

File Modifications: TestScene.unity; Dialog.cs

Explanation: As the game should be easy for new players to interact with, N12,
we added a dialog system to communicate various information to
players and to allow them to select input. Dialogs are specifically
used for: the game pause menu; telling the player the outcome of
the mini-game; displaying if a player has been eliminated or the
game is over. To implement the dialog system a single dialog is
used and by setting the dialog type different buttons are enabled
and disabled. For example the EndGame Dialog type enables the
Restart and Quit buttons and disables the other components but
the SaveQuit type enables the Save & Quit button and the Quit
button.

Changes Made: Neutral Player

File Modifications: Game.cs/CreatePlayers(); Player.cs; PlayerUI.cs

Explanation: Added neutral attribute to Player.cs. Set and Get Controller
methods were created to get/set if the player was being controlled
by a human, neutral or none.
PlayerUI.cs/Initialize(player player, int player_id) updated so that
the UI displays if the player is neutral.
This addition was made to fulfill requirement F1.

Changes Made: Vice Chancellor Spawning

File Modifications: Game.cs/InitializeMap(); Sector.cs

Explanation: The InitializeMap() function has been extended so that when the
map is setup one sector is selected to contain the Vice Chancellor.
To support this the Sector.cs file had a VC attribute added which is
false unless that sector was chosen to contain the Vice Chancellor.
The Vice Chancellor’s location is chosen by randomly selecting a
sector until one that does not contain a landmark is found. If such
a sector is found then its VC attribute is set to true; else another
sector is chosen again.
The addition was made in accordance with requirement F2.

Changes Made: Main Menu Added

File Modifications: MainMenu.unity; Menu.cs

Explanation: Requirement N11 states that ‘The game should have a simple
Main Menu’. Therefore a Main Menu scene was added to the
game where the player may choose to start a new game, with 3 or
4 players, or load a game from file. To meet requirement N3 every
game must have 4 players in it so in the 3 player mode the game
is started with 3 human players plus a computer controlled neutral
player. The load game option enabled us to help fulfill F7.

Changes Made: Player Eliminated and Game Over detection and notification

File Modifications: Player.cs

Explanation: The Defeat(Player player) was created to transfer all sectors
owned by this player to the passed player, only if this player had
been eliminated. Additionally the CheckForDefeatedPlayers()
function was created which checks if a player has been eliminated
and if they have then displays a dialog saying they have been
eliminated.

Changes Made: Added an End Turn button

File Modifications: TestScence.unity; Game.cs/EndTurn()

Explanation: An End Turn button was added to the main game scene which
calls the EndTurn() method in Game.cs when pressed, this ends
the current player’s turn regardless of how many actions they have
remaining. This was added to meet requirement N10.

Modifications

Changes Made: Overhauled previous implementations commenting system

File Modifications: Game.cs; Initializer.cs; Landmark.cs; Map.cs; Player.cs;
PlayerUI.cs; Sector.cs; Unit.cs

Explanation: The implementation inherited by this team contained very limited
documentation of method functionality and what documentation
was there did not use C#’s correct docstring notation. Therefore to
help speed up our own work and make the project more
manageable for any new team working on this project we replaced
their method comments with proper docstring defining method
functions; the parameters they take and what value they return.

Changes Made: Game Initialization

File Modifications: Initializer.cs/Start()

Explanation: Initially the game when started would always start a new game.
However implementing our requirements meant that we now
needed to be able to start a new game, (with or without a neutral
player) or load a game from file. To support this the Initializer.cs
script was modified so that the type of game to start is read from
the PlayerPrefs and then the game is started in this mode.

Changes Made: Game Screen GUI

File Modifications: TestScene.unity

Explanation: The aesthetic of the main game screen was significantly
overhauled to make it easier for the player to understand what is
happening and so that it is more visually appealing, meeting
requirement N12. A full justification of the changes made can be
found in the Updated GUI Report [3].

Changes Made: Rebalance conflict resolution algorithm

File Modifications: Sector.cs/Conflict(Unit attackingUnit, Unit defendingUnit)

Explanation: The conflict resolution algorithm has been overhauled as with the
original implementation the outcome of combat was often very
unpredictable, even with a high level unit vs a lower one. This
made the game not very enjoyable to play.
The algorithm was modified such that the outcome was based on
the difference in unit strength plus bonuses. Then the winner was
selected using a weighted random outcome where the higher
strength player would have the higher chance to win and the
weaker only a small chance.
The modification lead to a much more predictable outcome, but
with still a small chance of a surprise outcome. This made the
game feel far more enjoyable to play.
The change was made to better fulfill requirement N9 as too
frequently stronger units were loosing to weaker ones making the
combat just feel random and unfair.

Changes Made: Unit levelup and material updating moved into separate methods

File Modifications: Unit.cs/LevelUp(); Unit.cs/updateUnitMaterial()

Explanation: LevelUp() initially contained the code for increasing a units level
and updating the material showing a unit’s level in the scene. The
material update code was moved into its own method,
updateUnitMaterial() so that the unit’s material could be updated
without changing the units level. This was needed as when a game
is loaded the unit’s materials need to be updated with their loaded
level.

References

[1] SEPR “Requirements Document” Lazer Dolphin Games [Online]. Available:
https://sepr-team-margaret.github.io/content/Req1U2.pdf​ [Accessed: Feb. 18, 2018].

[2] SEPR “Extended Requirements Elicitation” Risky Developments [Online]. Available:
http://www.riskydevelopments.co.uk/documents/ExtendedRequirementsElicitation.pdf
[Accessed: Feb. 18, 2018].

[3] SEPR “Updated GUI Report” Risky Developments [Online]. Available:
http://www.riskydevelopments.co.uk/documents/UpdatedGUIReport.pdf​ [Accessed:
Feb. 18, 2018].

https://sepr-team-margaret.github.io/content/Req1U2.pdf
http://www.riskydevelopments.co.uk/documents/ExtendedRequirementsElicitation.pdf
http://www.riskydevelopments.co.uk/documents/UpdatedGUIReport.pdf

