
Architecture

Conceptual​ ​Design

Class​ ​Diagram
We have produced a conceptual model of our games class structure. The software architecture is
represented in UML 2.x [1] ​and was drawn in StarUML. The diagram [2] details a proposed
structure of the gameplay section of the software, the menu and options systems have been
omitted. Furthermore, getter, setter and other low level implementation details have been omitted
to​ ​ensure​ ​the​ ​diagram​ ​is​ ​easy​ ​to​ ​read.

Notation
The diagram shows a conceptual design of the software’s classes. The structure was designed
with a Java based implementation in mind. Each box represents a class which may contain
attributes and operations. Attributes are in the format of ‘Identifier: Type’ and operations are in the
form ‘Identifier(Param1 : Type, Param2 : Type…): Return Type’. The links between the classes
show how classes associate with each other. A line with no marking at either end shows a simple
association. A black diamond at one end shows that the class with the diamond at the end is
composed of the other class, this a strong relationship i.e. the class that is made up of the other
one could not exist without the other one.Finally, an arrow head marking shows the class that is
being​ ​pointed​ ​to​ ​is​ ​a​ ​parent​ ​class​ ​of​ ​the​ ​other​ ​one.

The numbers at each end of the links shows the multiplicity of the relationships. For example, the
relation between Game and Player may be interpreted as one Game class is composed of
between​ ​3​ ​and​ ​5​ ​player​ ​classes.​ ​‘n..*’​ ​denotes​ ​a​ ​multiplicity​ ​of​ ​n​ ​or​ ​more.

Variables or methods that are ​underlined are static methods and classes and methods that are in
italics​ ​​are​ ​abstract​ ​classes​ ​and​ ​methods.

Gameplay​ ​Flowchart
The gameplay is composed of four key phases: initial troop allocation; attack phase; movement
phase and troop reinforcement phase. The initial troop allocation phase only occurs once for each
player, at the beginning of the game, whereas the other phases occur each turn for each player. A
full diagram showing the stages of gameplay can be found in document [3]. This document shows
the order of processes from the start of the game; through each player’s turn and finally checking
at​ ​the​ ​end​ ​of​ ​each​ ​turn​ ​if​ ​a​ ​player​ ​has​ ​won.

The most complex stage in the gameplay loop is the attack phase. The diagram below illustrates
an​ ​attack​ ​phase,​ ​extracted​ ​from​ ​the​ ​main​ ​gameplay​ ​loop.

The​ ​flowcharts​ ​were​ ​produced​ ​using​ ​Lucidchart.

The player is able to attack with any sector they wish as many times as they like, as long that
sector has troops on it to carry out the attack. They must choose the amount of troops they would
like to attack with and then the combat mechanism is used to decide the outcome of battle. If the
player successfully destroyed all of the opponent's troops then they must choose how many troops
to move onto the newly acquired tile, from the tile they attacked with. Additionally, when a territory
is conquered their is a chance the Vice-Chancellor will appear and challenge the player to a
mini-game. If the player then wins this challenge then the tile they conquered is given some bonus
reinforcements.

Architecture​ ​Justification
This system architecture was designed with the client’s requirements in mind. These requirements
may be found in document [4] and specific requirements are referenced using the ID numbers, as
defined​ ​in​ ​the​ ​Requirements​ ​document.​ ​The​ ​conceptual​ ​design​ ​of​ ​the​ ​system​ ​is​ ​justified​ ​below:

Game
The Game class is the main controller of the gameplay. It sets up the game initially, allocates the
Sectors to each Player as needed by F17; contains the main game loop; manages the players’
turns; saves games and loads games from save files. The saving and loading system is required
by F12 and performed using the methods SaveGameState and LoadGameState.The class
contains the boolean variable TurnTimerEnabled so that the turn timer can be toggled on and off,
this satisfies requirement F2. Additionally to meet requirement F3, the boolean TurnTimerPaused
is​ ​used​ ​to​ ​pause​ ​the​ ​timer​ ​if​ ​the​ ​mini-game​ ​is​ ​in​ ​progress.
One game is composed of one Map and between three and five Players. It is also associated with
the​ ​Audio​ ​Handler​ ​so​ ​that​ ​the​ ​Game​ ​can​ ​control​ ​the​ ​music​ ​currently​ ​playing.

Map
The map is responsible for storing each sector in the game map. It must also be able to check if a
player has won yet; apply the effects of a random event to the relevant sectors; move units
between Sectors and calculate how many reinforcements a Player should receive at the end of
their​ ​turn,​ ​based​ ​off​ ​the​ ​Sectors​ ​they​ ​own​ ​as​ ​required​ ​by​ ​F16.
The Map class is composed of at least one sector. It is associated with an Event Generator so that
if an event occurs at the start of a turn then one can be fetched to apply and is also associated with
the Audio Handler so that sound effects from events can be played. Finally, the Map is associated
with between three and five Players so that the Player’s actions in their turn can be carried out, e.g.
the​ ​Player​ ​can​ ​move​ ​units​ ​between​ ​Sectors.

Sector
This class stores who owns this Sector, the OwnerID, and how many units are currently in this
Sector.​ ​It​ ​has​ ​methods​ ​for​ ​adding​ ​and​ ​removing​ ​units​ ​from​ ​the​ ​Sector.
A Sector is part of the composition of a Map and a sector is associated with one player. It is
associated​ ​with​ ​the​ ​player​ ​that​ ​owns​ ​it.

Event​ ​Generator
The Event Generator class must load the possible random events that can occur from a file and
create​ ​event​ ​objects​ ​so​ ​that​ ​these​ ​events​ ​can​ ​be​ ​applied​ ​to​ ​the​ ​map.
The event generator is composed of one or more Events. When GetEvent is called, by a Map
which it is associated with, one of the Events is returned so that it may be applied to the Sectors in
the​ ​Map.

Event
The class stores what effect the Event has on a Sector when the Event occurs; the sound effect
that should be played when the event occurs; some flavour text to tell the player what the effect
was​ ​and​ ​an​ ​image​ ​to​ ​show​ ​the​ ​player,​ ​visually,​ ​what​ ​has​ ​happened.
An​ ​event​ ​is​ ​part​ ​of​ ​the​ ​composition​ ​of​ ​the​ ​Event​ ​Generator.

Player,​ ​PlayerHuman,​ ​PlayerAI​ ​and​ ​PlayerNeutralAI
PlayerAI and PlayerHuman are children of Player, and PlayerNeutralAI is a child of PlayerAI.
Player contains abstract methods for the logic of what to do in each phase of a player’s turn.
PlayerHuman will be implemented so that a user can decide what they want to do. PlayerAI should
contain logic so that a human could play against a computer and PlayerNeutralAI is a special case
of​ ​PlayerAI​ ​where​ ​the​ ​AI​ ​will​ ​only​ ​defend,​ ​not​ ​move​ ​or​ ​attack.
The Game is composed of between three and five Players, where there may be a maximum of one
PlayerNeutralAI and there can be a maximum of four PlayerAI and PlayerHuman, i.e. there is a
max of 4 normal Players and then additionally there may be a neutral player. This is required by
F10.
Player is associated with Map so that the Player’s actions in a turn may be executed, i.e. attacking
another Sector; moving troops between Sectors and allocating reinforcements to Sectors.
Attacking another sector triggers the conflict resolution system, as required by F5. Player
associates with Audio Handler so that sound effects may be played when the Player makes an
action. In case of a Player conquering a Sector after having attacked it and the Vice-Chancellor
appearing the Player is associated with the ViceChancellor class so that the mini-game may be
triggered.

Vice​ ​Chancellor
This class contains a static method that when called triggers the mini-game. The method returns
an integer value of how many bonus reinforcements the player should be awarded, if they do not
win this will be zero as required by F9. It is not guaranteed that the Vice-Chancellor will appear
when​ ​a​ ​Sector​ ​is​ ​conquered,​ ​the​ ​probability​ ​is​ ​determined​ ​by​ ​the​ ​SpawnChance​ ​variable.
The class is associated with the Players so that if they the Player conquers a territory then the
StartMiniGame method can be called. It also associates with the AudioHandler so that sound
effects​ ​within​ ​the​ ​mini-game​ ​can​ ​be​ ​played.

Audio​ ​Handler
The Audio Handler is used to load audio files and play them when PlaySound is called. This meets
requirement NF4. PlaySound is a static method so that it can be called at any point during the
game from other classes as there are many occasions where sound may need to be played, e.g.
during​ ​the​ ​mini-game;​ ​when​ ​troops​ ​attack​ ​each​ ​other​ ​and​ ​when​ ​a​ ​random​ ​event​ ​occurs.
Audio Handler associates with Game, Map, Player and ViceChancellor so that they may play music
and​ ​sound​ ​effects.

References
[1] Bell,​ ​D.​ ​(2004).​ ​The​ ​class​ ​diagram.​ ​[online]​ ​Ibm.com.​ ​Available​ ​at:

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index
.html​​ ​[Accessed​ ​3​ ​Nov.​ ​2017].

[2] SEPR​ ​“UML​ ​Class​ ​Diagram”​ ​Risky​ ​Developments​ ​[Online].​ ​Available:
http://www.riskydevelopments.co.uk/documents/UMLClassDiagram.png​​ ​[Accessed​ ​3

[3] SEPR​ ​“Gameplay​ ​Flowchart”​ ​Risky​ ​Developments​ ​[Online].​ ​Available:
http://www.riskydevelopments.co.uk/documents/FullGameplayFlowchart.png​​ ​[Accessed​ ​3
Nov.​ ​2017].

[4] SEPR​ ​“Req1”​ ​Risky​ ​Developments​ ​[Online].​ ​Available:
http://www.riskydevelopments.co.uk/documents/Req1.pdf​​ ​​​ ​​[Accessed​ ​7​ ​Nov.​ ​2017].

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
http://www.riskydevelopments.co.uk/documents/UMLClassDiagram.png
http://www.riskydevelopments.co.uk/documents/FullGameplayFlowchart.png
http://www.riskydevelopments.co.uk/documents/Req1.pdf

